Cell line: HeLa Cells
Cell type: Human cervix carcinoma
Origin: Taken from cervix carcinoma of a 31 year Henrietta Lacks in 1951
Morphology: Epithelial-like cells growing in monolayers

How do Hela cells keep dividing while other cells die off

 Hela cells are cancer cells and have ability to divide rapidly and indefinitely. This is because they have acquired mutations in their DNA that allow them to evade the normal cellular mechanisms that control cell growth and division. These mutations can affect a variety of different cellular processes, including the ability of cells to respond to growth signals, the ability of cells to repair DNA damage, and the ability of cells to undergo programmed cell death (apoptosis). By disrupting these normal cellular mechanisms, cancer cells are able to divide and grow in an uncontrolled manner, which can lead to the formation of a tumor. As a result, Hela cells are able to keep dividing and reproducing, even when other normal cells in the body would die off. This ability to indefinitely divide is one of the key characteristics of cancer cells, and it is what makes them so difficult to treat.

HeLa cells re capable of undergoing rapid, mitotically-driven cellular division. In order to achieve this, HeLa cells undergo a process known as mitosis. This involves a series of stages which culminate in the separation of the genetic material from the parent cell into two daughter cells.

The first stage of mitosis is known as prophase. During this stage, the genetic material, housed within the nucleus of the HeLa cell, condenses to form a pair of chromosomes. The nuclear membrane also begins to break down.

The second stage is known as metaphase. During this stage, the chromosomes line up at the cell’s equator.

The third stage is anaphase. During this stage, the sister chromatids separate, and are drawn to the cell’s poles.

The fourth stage is telophase. During this stage, the chromosomes reach the cell’s poles, and a new nuclear membrane forms around each daughter cell. The cytoplasm also divides in two, allowing the two daughter cells to separate.

Finally, cytokinesis occurs. During this stage, the cytoplasm divides, and a cleavage furrow forms between the two daughter cells. This cleavage furrow then deepens until the two daughter cells have been completely separated.

Overall, HeLa cells divide by undergoing the process of mitosis. This involves four stages; prophase, metaphase, anaphase and telophase. The process is completed by cytokinesis, where the cleavage furrow between the daughter cells deepens until the two cells are completely separated.

HeLa Cells - News